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Part 2. Spectral Clustering from
Matrix Perspective

A brief tutorial emphasizing recent developments

(More detailed tutorial is given in ICML'04 )

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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From PCA to spectral clustering

using generalized eigenvectors

Consider the kernel matrix:  W; = <¢(XI ), d(X; )>
In Kernel PCA we compute eigenvector: VWV = AV

Generalized Eigenvector: W = ADQ

D=diag(dy,+d) di=)" w,

Thisleadsto Spectral Clustering !

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Indicator Matrix Quadratic Clustering

Framework

Unsigned Cluster indicator Matrix H=(h,, -, hy)

Kernel K-means clustering:

max Tr(H 'WH), st.H'H=1,H>0
H

K-means: W=X"X; Kernel K-means w=(<g(x),¢(x;)>)

Spectral clustering (normalized cut)

max Tr(H 'WH), st.H'DH =1,H >0
H

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 58
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EREKELEY '

Brief Introduction to Spectral Clustering
(Laplacian matrix based clustering)

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Some historica notes

e Fledler, 1973, 1975, graph Laplacian matrix
e Donath & Hoffman, 1973, bounds
o Hall, 1970, Quadratic Placement (embedding)

e Pothen, Simon, Liou, 1990, Spectral graph
partitioning (many related papers there after)

 Hagen & Kahng, 1992, Ratio-cut

e Chan, Schlag & Zien, multi-way Ratio-cut
e Chung, 1997, Spectral graph theory book
o Shi & Malik, 2000, Normalized Cut

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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BERKELEY l.

9 papers on spectral clustering

Meila& Shi, Al-Stat 2001. Random Walk interpreation of
Normalized Cut

Ding, He & Zha, KDD 2001. Perturbation analysis of Laplacian
matrix on sparsely connected graphs

Ng, Jordan & Weiss, NIPS 2001, K-means algorithm on the
embeded eigen-space

Belkin & Niyogi, NIPS 2001. Spectral Embedding

Dhillon, KDD 2001, Bipartite graph clustering

Zhaet a, CIKM 2001, Bipartite graph clustering

Zhaet a, NIPS 2001. Spectral Relaxation of K-means

Ding et a, ICDM 2001. MinMaxCut, Uniqueness of relaxation.

Gu et a, K-way Relaxation of NormCut and MinMaxCut

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Spectral Clustering

min cutsize , without explicit size constraints

But whereto cut ?

(.

Need to balance sizes

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Graph Clustering

min between-cluster similarities (weights)

/ sSmAB)=> > w,

leA jeB

Balance weight
Balance size

Balance volume

sSMAA) =Y > w,

ieA jeA

max within-cluster similarities (weights)
PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 63



Hirn}l |||"

= Clustering Objective Functions
S(A,B)=ZA:;V\41'
- i
Ratio Clthcut(A,B) o lAA’lB)+ S(ng)
e Normalized Cut dA:Zdi
Jnou(AB) = S(Q’AB) + S(S\;B) o

S(A, B) . s(A,B)

s(A,A)+s(AB) s(B,B)+s(AB)
e Min-Max-Cut
Iumc(AB) = S(A’B)‘FS(A’B)

S(A/A) s(B,B)

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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*_ Normalized Cut (Shi & Malik, 2000)

Min similarity between A & B: s(AB)= ¥ > W;

le Aje B
Balance weights s(A,B) s(AB
JNCUt(A’B) - (d )+ (d ) dA:Zdi
A B :

Jdg/dad  ifie A
~Jd,/dgd if ieB d=>"d

Normalization: q'Dg=1q'De=0
Substitute g leadsto  J,.,(@) = q'(D-W)q

Cluster indicator: q(i)={

mingq' (D-W)q+4(q' Dg-1)

Solution is eigenvector of (D -W)qg= ADg

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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A simple example

2 dense clusters, with sparse connections

between them.

Adjacency matrix
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BEAKELEY '

K-way Spectral Clustering
K>2

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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=N K-way Clustering Objectives
e Ratio Cut

- s(C,.C))  s(Cy.C)) | ~ s(C.G-C))
Jrout (Cp+,Cy) = <kz,l>£ |C\] ’ IC|| ]_; IC

e Normalized Cut

K

<k,I>

e Min-Max-Cut

_ S(C.C) | S(C.C) | _§ S(C.G-C)
JIvmc (G-, Ck) Z[S(Cklck)+S(C|,Cl)j ; GG

<k,I>

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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‘7 K-way Spectral Relaxation

hl=(1---LO---O,O---O)T
h, = (0---01---1,0---0)"

Unsigned cluster indicators:

Re-write: h = (00,001 1)
I (M ) = hf(f;;—hzwhl L (E;E—h\ivmk
It (B Py) = hf(h?[—)xlwhl o h (htg[—)x?hk
Iy (B h) = M(h?m)hl+m+ hl(hfg\xﬁ\:z)hk

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Unsigned cluster indicators: n,
| Yy = DY2(0--0,1-10---0)T /|| DY2h |
Re-wrlite: _ N
Incut (Y11 ¥i) = Y1 (1 =W)yp +-+ y (1 =W)y,
=Tr(Y" (1 -W)Y) W =DY2WDY?

Optimize: innTr(YT(| ~W)Y),subjectto Y'Y =1

By K. Fan’ s theorem, optimal solution is
eigenvectors. Y=(Vy,Vs, ..., Vi), (I =WV, = 4V,

(D—W)Uk — ﬂ'k Duk, Uk — D_1/2Vk

A+ A Smin ey (Yoo Vi) (Gu, et al, 2001)

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

‘f K-way Normalized Cut Spectral Relaxation
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S K-way Spectral Clustering is difficult

e Spectral clustering is best applied to 2-way
clustering
— positive entries for one cluster
— negative entries for another cluster

e For K-way (K>2) clustering

— Positive and negative signs make cluster
assignment difficult

— Recursive 2-way clustering

— Low-dimension embedding. Project the data to
eigenvector subspace; use another clustering

method such as K-means to cluster the data (Ng
et al; Zha et al; Back & Jordan, etc)

— Linearized cluster assignment using spectral ordering and
cluster crossing

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Scaled PCA: aUnified Framework
for clustering and ordering

e Scaled PCA has two optimality properties
— Distance sensitive ordering
— Min-max principle Clustering
e SPCA on contingency table = Correspondence Analysis
— Simultaneous ordering of rows and columns
— Simultaneous clustering of rows and columns

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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‘ Scaled PCA

similarity matrix S=(s;) (generated from XXT)

D =diag(d,,---,d) d =§

1

Nonlinear re-scaling: §: D—ZSD—é,gj =5 /(351 )sz
Apply SVD on § —

—_—~

S=DSD?=D*> 74z D*=D| > g q; |D
K I |

Ok = D'1/22k IS the scaled principal component

Subtract trivial component 4. =1, z= d¥?/s.., 0=

= S—dd'/s.= Dkz_:lqkﬂk g, D

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

(Ding, et a, 2002)

1
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”\ Scaled PCA on a Rectangle Matrix
— Correspondence Analysis

Nonlinear re-scaling: P — Dr_%PDC_%, ﬁj =P /([Z]_pj_)ﬂ2

—~

Apply SvDon P Subtract trivial component

P-rc'/p.=D.Y f 4 g D, =(R,s P’
k=1 -
C=(Py " Pn)

=D U, 9=D."v

are the scaled row and column principal
component (standard coordinates in CA)

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding



Correspondence Analysis (CA)

e Mainly used in graphical display of data
e Popular in France (Benzécri, 1969)
e Long history

— Simultaneous row and column regression (Hirschfeld,

1935)

— Reciprocal averaging (Richardson & Kuder, 1933;
Horst, 1935; Fisher, 1940; Hill, 1974)

— Canonical correlations, dual scaling, etc.

 Formulation is a bit complicated (“convoluted”
Jolliffe, 2002, p.342)

e “A neglected method”, (Hill, 1974)

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Clustering of Bipartite Graphs (rectangle matrix)

Simultaneous clustering of rows and columns
of a contingency table (adjacency matrix B)

Examples of bipartite graphs

 Information Retrieval: word-by-document matrix
» Market basket data: transaction-by-item matrix
 DNA Gene expression profiles

 Protein vs protein-complex

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 76
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o) § Bipartite Graph Clustering

Clustering indicators for rows and columns:

f(i):{l -if reR g(i):{l if ceC,

_1 |f ri € R2 -1 |f Cl = C2
B = BRl’Cl BRl’Cz W _ [ OT Bj q _ (f j
Br,c, Brec, BT 0 9
Substitute and obtain ) s
S S
Jume (C1,C1 R Ry) = S(\le) + S(V\/lz)
f,g are determined by s .

[ oMo alo4™ ol

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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\ Spectral Clustering of Bipartite Graphs

Simultaneous clustering of rows and columns
(adjacency matrix B)

R1 I R2 S(Br c,) = Z Zhj

|
rl r2 r3 r4 I' S5 r6 17 ieRC;eCy

O - | O O
W min between-cluster sum of
& ¢ 0 : O weights: S(R,,C,), S(R,,C,)

cl ¢2 ¢3 c4,c5 ¢6 o
C1 SNe) max within-cluster sum of

cut weights: S(R;,C,), S(R,,C))

S(Brc,)+S(Br) | S(Byc,)+S(Byc)

25( B ¢, ) 25( B c. )

(Ding, AI-STAT 2003)
PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 78
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Embedding in Principal Subspace

Cluster Self-Aggregation
(proved in perturbation analysis)

(Hall, 1970, “quadratic placement” (embedding) a graph)

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 30
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- OPectral Embedding: Self-aggregation

e Compute K eigenvectors of the Laplacian.
 Embed objects in the K-dim eigenspace

[ A1 Input Spaca [ B Embadding Spaca

T -«
[ LT

L ] -‘ 8.
. 3, LA g
,.-f-i"g"i .
¥ T - LT
. - - n B od

1 . x

L9 .
ﬂf&h - L N " " s =,
H e i -

i . N o
L Tl S -
:'-5;"-'3’:-_ LR
""*“."*'«'.-'F g ;

.. LI R =
o oiznE -k
avim L AN - -
L . o oL
mya Foat” '
. S “
Ty . I
-

. - . . o (Ding, 2004)
PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Spectral embedding Is not
topology preserving

700 3-D datapointsform -
2 Interlock rings

Q015

Q01 -

In eigenspace, they
shrink and separate |

L L L L L
0.0 —0.008 Q 0.005 0.01

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding



Spectral Embedding

Simplex Embedding Theorem.
ODbjects self-aggregate to K centroids

Centroids locate on K corners of a simplex
« Simplex consists K basis vectors + coordinate origin
« Simplex isrotated by an orthogonal transformation T
T are determined by perturbation analysis

: . : : . Ding, 2004
PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding (Ding )
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Perturbation Analysis

Wg=4ADgq Wz=(D YWD Y?)z=4z q=D"?z

Assume data has 3 dense clusters sparsely connected.

_V\h \MZ \MS— C,
W=Wo; W, Wog
W, Wy W3 | -

Off-diagonal blocks are between-cluster connections,

assumed small and are treated as a perturbation

. o . . o (Ding et a, KDD’01)
PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 84
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‘ Spectral Perturbation Theorem

Orthogonal Transform Matrix T = (t;,---,1 )

T aredetermined by: It =4t

11— 1
Spectral Perturbation Matrix T '=QQ 2J°Q) 2

hy =S o =S| Spq = S(Cp,Cq)
— | =Sxu o hyp e =Sy _
e : ST i _Zplpvfkskp
| —Sk1 —Sk2 hk | Q=diag[ p(Cy),--+, p(Cy)]

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Connectivity Network

c - 1 if 1,] belongtosamecluster
1o otherwise

Scaled PCA provides C= qukgk g, D
k=
Green’s function : C=G=) q O
o 1A
c T
Projection matrix: C=Ps= qu Ok
k=1

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

(Ding et al, 2002)
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Jﬁ\"}\m‘ 15t order Perturbation: Example 1

Similarity matrix W I

af
00z Y
]

L
100
ddddddddd

| Between-cluster connections suppressed

Connectivity
matrix

| Within-cluster connections enhanced

PCA & Matrix Factorizations for Learning, ICML ZOOEI-'I:U (9 g,‘i‘,%risq)fngse If—agg reg ation g7
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=2 4 Optimality Properties of Scaled PCA

Scaled principal components have optimality properties:

Ordering
— Adjacent objects along the order are similar
— Far-away objects along the order are dissimilar

— Optimal solution for the permutation index are given by
scaled PCA.

Clustering
— Maximize within-cluster similarity
— Minimize between-cluster similarity

— Optimal solution for cluster membership indicators given
by scaled PCA.

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 38



Spectral Graph Ordering

(Barnard, Pothen, Simon, 1993), envelop reduction of sparse
matrix. find ordering such that the envelop is minimized

. - - - 2

miny max; [I—J[w, = min) (X —X;) "W
| 1]

(Hall, 1970), “quadratic placement of a graph”:

Find coordinate X to minimize

J=2 (% —x)*w; =x" (D-W)x
J
Solution are eigenvectors of Laplacian

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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=24 Distance Sensitive Ordering

Given a graph. Find an optimal Ordering of the nodes.
TT permutation indexes

J(m)=>"w, A= ()

W7Z',72'3
szz(ﬂ'):‘ Frrrrrr

© 000000000 O0OO0CDO0ODO0ODO0OO0ODO0O0

\NANANAN
min J(z) = 4 d"3, (%)

The larger distance, the larger weights, panelity.

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding



=% Distance Sensitive Orderi ng

I =2~ )W, , = 3 (=)W, ,

- zorl—n-lfw -

Z (7; L (n+1)/2 fcj-l—(n+1)/2)2
n/2 n/2 ]
Define: shifted and rescaled Inverse permutation indexes

7 '—(n+1)/2 1-n 3 n. n- ]}

n/2 =1 n

J(7)=5%(q —a;)*W, =2q" (D-W)q

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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=% Distance Sensitive Orderi ng

Once g, Is computed, since

() <q,()) =7 <x”

7t. © can be uniquely recovered from g,

Implementation: sort g, induces

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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LY, -ir" Re-ordering of Genes and Tissues

_ (7
- J(random)

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding 03



T

LLLLU "'\ Spectral clustering vs Spectral ordering

e Continuous approximation of both integer
programming problems are given by the same
eigenvector

e Different problems could have the same
continuous approximate solution.

e Quality of the approximation:

Ordering: better quality: the solution relax
from a set of evenly spaced discrete values

Clustering: less better quality: solution relax
from 2 discrete values

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

94



3 FN::}] m"

Linearized Cluster Assignment

Turn spectral clustering to 1D clustering problem

e Spectral ordering on connectivity network

e Cluster crossing
— Sum of similarities along anti-diagonal
— Gives 1-D curve with valleys and peaks
— Divide valleys and peaks into clusters

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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Cluster overlap and crossing

Given similarity W, and clusters A,B.

Cluster overlap S(AB)= ZZW”

icA jeB
Cluster crossing compute a smaller fraction of cluster
overlap.

Cluster crossing depends on an ordering o. It sums
weights cross the site i along the order

m
p(l)= ZiWo(i—j),o(iﬂ')
j=

This is a sum along anti-diagonals of w.

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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PCA & Matrix F

cluster crossing

1
=80

1 1
200 35 400 450 500

()
250 300 350 400 480 500
(k)

=80

fc)

300 350 400 450 500
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K-way Clustering Experiments

Accuracy of clustering results:

Method | Linearized Recursive 2-way Embedding
Assignment | clustering + K-means

Data A |89.0% 82.8% 75.1%

Data B | 75.7% 6/7.2% 56.4%

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding
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) § Some Additional
Advanced/related Topics

e Random talks and normalized cut

e Semi-definite programming

e Sub-sampling in spectral clustering

e Extending to semi-supervised classification
e Green’s function approach

e Qut-of-sample embeding

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

99



